ABSTRACT

Recovery of used adsorbent is very important from the adoptability and economy point of view. Phenol is one of the major pollutants removed from wastewater by using adsorption technique. The problem in this process is regeneration of used adsorbent. The reuse of adsorbent is very important aspect of the adsorption process. Various thermal, chemical and other advanced techniques are available for the regeneration of adsorbent in phenol treatment. The current review aims at summarizing research carried out for desorption of phenol from adsorbent.

RESEARCH ON DESORPTION OF ADSORBENT FOR PHENOL TREATMENT

Moreno-Castilla et.al. carried out investigation on thermal regeneration of an activated carbon exhausted with different substituted phenols[21]. They studied thermal desorption process for phenol, m-aminophenol, p cresol and p-nitrophenol. They obtained the activated carbon by pyrolysis in N₂ and steam activation of a Spanish bituminous coal. They observed that, during the oven drying process of the different AP l0-phenolic compound systems, a fraction of the adsorbed phenol was released from the activated carbon. During thermal regeneration, 6 percent of phenol was desorbed at 300-425 °C. They also observed that the phenol desorbed between 425-925 was chemisorbed. Total weight loss detected by them was 71% of the adsorbed phenol (X) at 1100°C. According to them, the difference in weight loss between TG and MS (33%) is due to P and heavy compounds, coming from both the physisorbed and chemisorbed fractions evolved from the activated carbon and deposited at the outlet of the reactor. Bhatia et.al. investigated the effective diffusivity of phenol in activated carbon[22]. They generated desorption data by desorption of phenol loaded on GAC into the aqueous phase. They studied effect of various parameters like agitation speed, temperature and phenol concentration on desorption. According to them judicious choice of agitation speed can avoid external mass transfer resistance. They also observed that the rate of desorption increased with an increase in temperature. Bada carried out experiments with fly ash as an adsorbent for removal of phenol and its derivatives from synthetic effluent[23]. He carried out desorption studies in 250 ml conical flasks containing water at a temperature of 307 K, shaken at 300 rpm to attain equilibrium at 22 h. Earlier adsorbent used in batch adsorption was contacted with distilled water by him. The water sample was analyzed for phenol and this was continued till equilibrium. He observed that The desorption of 4-Nitrophenol from FA was found to be more difficult and more irreversible than that of 2-Nitrophenol and phenol. Desorption efficiency ranged from 10 percent for 4-nitrophenol to 18 percent for phenol. Adsorption efficiency for all three phenols was in the range of 88-92 percent.

Mahapatra with guidance from Kumar investigated two different types of activated carbons were used as adsorbents namely, commercial granular activated carbon and laboratory prepared water hyacinth activated carbon[24]. He used chemical activation method with phosphoric acid impregnation. Desorption studies were also performed by Vasu. His investigation suggested that the sorbed phenol molecules can be desorbed with dil. HCl[25]. He used water, dilute acetic acid and dilute HCl as eluent. By using first two, 25 and 52 percent desorption for phenol was observed, while for HCl 70 percent desorption was possible. Haydar et.al. investigated adsorption of phenol on activated carbon[26]. They prepared an activated carbon prepared from olive stones have been modified through oxidation by nitric acid or sodium hypochlorite. Kim et.al. carried out investigations on sorption and desorption kinetics of chlorophenols in hexadecyltrimethyl ammonium-montmorillonites[27]. They observed that Approximately 71% of 2-Chlorophenol (ChP), 34% of 2,4-Di ChP, and 17% of 2,4,5-Tri ChP was desorbed within 30 minutes. They also observed that the mass transfer coefficient for desorption (kd) increased with Kow due to the weaker interaction between the solute and the organoclay, as Kow value decreases.
Rege and Yang discussed feasibility study of using ultrasound to accomplish the difficult desorption of phenol from activated carbon and polymeric resin adsorbents [28]. They observed that desorption rates of activated carbon significantly increased by ultrasound at 40 kHz and 1.44 MHz. Initially they determined the stability of the resin beads under the influence of an ultrasonic field. Preliminary study showed that two resins i.e. XAD-4/1090 Amberlite polymeric resin and Dowex Optipore L493 polymeric adsorbent, had the potential for separation of phenol from water. Their research also indicated that ultrasonic desorption rates were favored by decreased temperature, aerated liquid medium, and increased ultrasound intensity. According to this investigation, the ultrasonic desorption method was particularly successful in the case of the polymeric resin adsorbent. Hu examined the adsorption capacities of coconut shells-based microporous and mesoporous activated carbons by uptake of phenol, 4-Chlorophenol (4-CP), 4-nitrophenol (4-NP), methylene blue and erythrosine red [29]. They also carried out regeneration by boiling water washing and subsequently thermal treating phenol-saturated activated carbon in nitrogen at temperatures from 300 to 700°C. They observed 90–110% recovery in adsorption capacity. Studies were carried out by Chang and Sparks for studying kinetics of phenol and aniline adsorption and desorption on an organo—clay [30]. They observed that about 42% of the adsorbed phenol was desorbed in 30 min.

CONCLUSION

Regeneration of adsorbent in phenol treatment can be carried out by using various solvents such as water, dilute acetic acid and dilute hydrochloric acid. Hydrochloric acid was most efficient for removal of phenol from the adsorbent. The thermal regeneration was also efficient for regeneration of the adsorbent. Use of recent techniques like electric and ultrasonic regeneration was also investigated. It can be concluded that the choice of regeneration method depends on the concentrations to be treated, cost of adsorbent, amount of effluent to be treated and solid disposal facilities available.

REFERENCES


Mr. Sunil J. Kulkarni
Mr. Sunil J. Kulkarni has completed his Masters in Chemical Engineering from Tatyasaheb Kore Institute of Engineering and Technology, Waranagar. He is working as Assistant Professor in Chemical Engineering Department of Datta Meghe College of Engineering, Airoli, Navi Mumbai, India. He has published 13 international review and research papers and presented 35 research papers in international conferences. His area of research includes adsorption, environmental engineering. He is on the reviewer board of many international journals and reviewed many international papers.

Email: suniljayantkulkarni@gmail.com

Dr. Jayant P. Kaware
Dr. Jayant Prabhakarrao Kaware, male, Chemical Engineer, pursued his education from Laxminarayan Institute of Technology, Rashtra Sant Tukdoji Maharaj Nagpur University. He was Professor-in-charge for the Biodiesel Research Laboratory associated with the department of chemical engineering. He was Member of Board of Studies for Chemical & Polymer Technology at Sant Gadge Baba Amravati University from 2000 and Chairman from 2008 till 2012. He is a Member of Academic Council since 2005 in the University. He has published more than 36 research papers. He is working on various policy making government bodies related to biodiesel.