

### ON INTUITIONISTIC FUZZY β GENERALIZED OPEN SETS

#### Saranya M \*, Jayanthi D

Department of Mathematics, Avinashilingam University, India.

#### **DOI**: 10.5281/zenodo.51038

**KEYWORDS:** Intuitionistic fuzzy topology, intuitionistic fuzzy topological space, intuitionistic fuzzy  $\beta$  open sets, intuitionistic fuzzy  $\beta$  generalized open sets.

#### ABSTRACT

In this paper, we have discussed and investigated some of the properties and some of the characterization of intuitionistic fuzzy  $\beta$  generalized open sets in intuitionistic fuzzy topological spaces.

#### INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [11] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand chang [2] introduced fuzzy topological space. In continuation of the process Coker [3] introduced intuitionistic fuzzy topological spaces. In this paper, we have discussed and investigated some of the properties and some of the characterization of intuitionistic fuzzy topological spaces.

#### PRELIMINARIES

Definition 2.1: [1] An intuitionistic fuzzy set (IFS for short) A is an object having the form

$$\mathbf{A} = \{ \langle \mathbf{x}, \, \mu_{\mathbf{A}}(\mathbf{x}), \, \nu_{\mathbf{A}}(\mathbf{x}) \rangle : \mathbf{x} \in \mathbf{X} \}$$

where the functions  $\mu_A : X \to [0,1]$  and  $\nu_A : X \to [0,1]$  denote the degree of membership (namely  $\mu_A(x)$ ) and the degree of non-membership (namely  $\nu_A(x)$ ) of each element  $x \in X$  to the set A, respectively, and  $0 \le \mu_A(x) + \nu_A(x) \le 1$  for each  $x \in X$ . Denote by IFS (X), the set of all intuitionistic fuzzy sets in X.

An intuitionistic fuzzy set A in X is simply denoted by A= $(x, \mu_A, \nu_A)$  instead of denoting A = { $(x, \mu_A(x), \nu_A(x))$ :  $x \in X$ }.

**Definition 2.2:** [1] Let A and B be two IFSs of the form A = { $\langle x, \mu_A(x), \nu_A(x) \rangle$ :  $x \in X$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle$  :  $x \in X$ }. Then,

- (a)  $A \subseteq B$  if and only if  $\mu_A(x) \le \mu_B(x)$  and  $\nu_A(x) \ge \nu_B(x)$  for all  $x \in X$ ,
- (b) A = B if and only if  $A \subseteq B$  and  $A \supseteq B$ ,
- (c)  $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle : x \in X \},$
- (d)  $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \},$
- (e)  $A \cap B = \{ \langle x, \, \mu_A(x) \land \, \mu_B(x), \, \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets  $0 \sim = \langle x, 0, 1 \rangle$  and  $1 \sim = \langle x, 1, 0 \rangle$  are respectively the empty set and the whole set of X.

**Definition 2.3:** [3] An *intuitionistic fuzzy topology* (IFT in short) on X is a family  $\tau$  of IFSs in X satisfying the following axioms:

(i)  $0 \sim , 1 \sim \in \tau$ ,

- (ii)  $G_1 \cap G_2 \in \tau$  for any  $G_1, G_2 \in \tau$ ,
- (iii)  $\bigcup G_i \in \tau$  for any family  $\{G_i : i \in J\} \subseteq \tau$ .

In this case the pair  $(X, \tau)$  is called an *intuitionistic fuzzy topological space* (IFTS in short) and any IFS in  $\tau$  is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A<sup>c</sup> of an IFOS A in an IFTS  $(X, \tau)$  is called an intuitionistic fuzzy closed set (IFCS in short) in X.

**Definition 2.4:** [4] An IFS A =  $\langle x, \mu_A, \nu_A \rangle$  in an IFTS (X,  $\tau$ ) is said to be an

(i) intuitionistic fuzzy  $\beta$  closed set (IF $\beta$ CS for short) if int(cl(int(A)))  $\subseteq$  A,



(ii) intuitionistic fuzzy  $\beta$  open set (IF $\beta$ OS for short) if A  $\subseteq$  cl(int(cl(A))).

**Definition 2.5:** [5] Let A be an IFS in an IFTS (X,  $\tau$ ). Then the  $\beta$ -interior and  $\beta$ -closure of A are defined as

 $\begin{array}{l} \beta \text{int}(A) \ = \ \cup \ \{G \ / \ G \ \text{is an IF}\beta OS \ \text{in } X \ \text{and} \ G \subseteq A \}. \\ \beta \text{cl}(A) \ = \ \cap \ \{K \ / \ K \ \text{is an IF}\beta CS \ \text{in } X \ \text{and} \ A \subseteq K \}. \\ \text{Note that for any IFS } A \ \text{in} \ (X, \ \tau), \ \text{we have} \ \beta \text{cl}(A^c) = (\beta \text{int}(A))^c \ \text{and} \ \beta \text{int}(A^c) = (\beta \text{cl}(A))^c. \end{array}$ 

**Result 2.6:** [7] Let A be an IFS in  $(X, \tau)$  then

(i)  $\beta cl(A) \supseteq A \cup int(cl(int(A)))$ 

(ii)  $\beta int(A) \subseteq A \cap cl(int(cl(A)))$ 

**Definition 2.7:** [7] An IFS A in an IFTS  $(X, \tau)$  is said to be an *intuitionistic fuzzy*  $\beta$  generalized closed set (IF $\beta$ GCS for short) if  $\beta$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is an IF $\beta$ OS in (X,  $\tau$ ). The complement A<sup>c</sup> of an IF $\beta$ GCS A in an IFTS (X,  $\tau$ ) is called an intuitionistic fuzzy  $\beta$  generalized open set (IF $\beta$ GOS in short) in X.

The family of all IF $\beta$ GOSs of an IFTS (X,  $\tau$ ) is denoted by IF $\beta$ GO(X).

#### INTUITIONISTIC FUZZY $\beta$ GENERALIZED OPEN SETS

In this section we have investigated the basic properties of an intuitionistic fuzzy  $\beta$  generalized open sets.

**Example 3.1:** Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let  $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

We have  $A^c \subseteq G$ . As  $\beta cl(A^c) = A^c$ ,  $\beta cl(A^c) \subseteq G$ , where G is an IF $\beta$ OS in X. This implies that  $A^c$  is an IF $\beta$ GCS in X and hence A is an IF $\beta$ GOS.

**Theorem 3.2:** Every IFOS, IFROS [9], IF $\alpha$ OS [4], IFSOS [4], IFPOS [4], IF $\beta$ OS [4] and IFSPOS [10] and is an IF $\beta$ GOS but the converses are not true in general. **Proof:** Straightforward.

**Example 3.3:** Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0\sim, G, 1\sim\}$  is an IFT on X. Let  $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], v_a \in [0,1], v_b \in [0,1] / 0 \le \mu_a + v_a \le 1 \text{ and } 0 \le \mu_b + v_b \le 1\}.$ 

We have  $A^c \subseteq G$ . As  $\beta cl(A^c) = A^c$ ,  $\beta cl(A^c) \subseteq G$ , where G is an IF $\beta$ OS in X. This implies that  $A^c$  is an IF $\beta$ GCS in X and hence A is an IF $\beta$ GOS. But it is not an IFOS in X, since int(A) = G  $\neq$  A.

**Example 3.4:** Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let  $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  be an IFS in X.

Then, IF $\beta$ C(X) = {0~, 1~,  $\mu_a \in [0,1], \mu_b \in [0,1], v_a \in [0,1], v_b \in [0,1] / 0 \le \mu_a + v_a \le 1 \text{ and } 0 \le \mu_b + v_b \le 1$  }.

We have  $A^c \subseteq G$ . As  $\beta cl(A^c) = A^c$ ,  $\beta cl(A^c) \subseteq G$ , where G is an IF $\beta$ OS in X. This implies that  $A^c$  is an IF $\beta$ GCS in X and hence A is an IF $\beta$ GOS. But it is not an IFROS in X, since  $int(cl(A)) = int(1 \sim cl(A)) = 1 \sim cl(A)$ .

**Example 3.5:** Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let  $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  be an IFS in X.



Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], v_a \in [0,1], v_b \in [0,1] / 0 \le \mu_a + v_a \le 1 \text{ and } 0 \le \mu_b + v_b \le 1\}.$ 

We have  $A^c \subseteq G$ . As  $\beta cl(A^c) = A^c$ ,  $\beta cl(A^c) \subseteq G$ , where G is an IF $\beta OS$  in X. This implies that  $A^c$  is an IF $\beta GCS$  in X and hence A is an IF $\beta GOS$ . But it is not an IF $\alpha OS$  in X, since  $int(cl(int(A))) = int(cl(G)) = int(G^c) = G \not\supseteq A$ .

**Example 3.6:** Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let  $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  be an IFS in X.

Then, IF  $\beta C(X) = \{0 \sim, 1 \sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

We have  $A^c \subseteq G$ . As  $\beta cl(A^c) = A^c$ ,  $\beta cl(A^c) \subseteq G$ , where G is an IF $\beta$ OS in X. This implies that  $A^c$  is an IF $\beta$ GCS in X and hence A is an IF $\beta$ GOS. But it is not an IFSOS in X, since  $cl(int(A)) = cl(G) = G^c \not\supseteq A$ .

**Example 3.7:** Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$ , then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let  $A = \langle x, (0.5_a, 0.3_b), (0.5_a, 0.7_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \mu_b < 0.6 \text{ whenever } \mu_a \ge 0.5, \mu_a < 0.5 \text{ whenever } \mu_b \ge 0.6, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

Now  $A^c \subseteq 1 \sim As \beta cl(A^c) = 1 \sim \subseteq 1 \sim .$  We have  $A^c$  is an IF $\beta$ GCS in X and hence A is an IF $\beta$ GOS in X. But it is not an IFPOS, since  $A \not\subseteq int(cl(A)) = int(G^c) = 0 \sim$ 

**Example 3.8:** Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle$ , then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let  $A = \langle x, (0.5_a, 0.2_b), (0.5_a, 0.8_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ provided } \mu_b < 0.7 \text{ whenever } \mu_a \ge 0.5, \mu_a < 0.5 \text{ whenever } \mu_b \ge 0.7, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

Now  $A^c \subseteq 1 \sim$  and  $\beta cl(A^c) = 1 \sim \subseteq 1 \sim$ . This implies that  $A^c$  is an IF $\beta$ GCS in X and hence A is an IF $\beta$ GOS in X. But it is not an IF $\beta$ OS, since  $cl(int(cl(A))) = cl(int(G^c)) = cl(0 \sim) = 0 \sim \not\supseteq A$ .

**Example 3.9:** Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let  $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0 \sim, 1 \sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

Here A<sup>c</sup> is an IF $\beta$ CS in X, as int(cl(int(A<sup>c</sup>))) = 0 ~  $\subseteq$  A. Therefore A<sup>c</sup> is an IF $\beta$ GCS in X and hence A is an IF $\beta$ GOS.

Since IFPC(X) = {0 ~, 1 ~,  $\mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ either } \mu_b \ge 0.6 \text{ or } \mu_b < 0.4$ whenever  $\mu_a \ge 0.5, 0 \le \mu_a + \nu_a \le 1$  and  $0 \le \mu_b + \nu_b \le 1$ }.

But A is not an IFSPOS in X, since there exists no IFPOS B such that  $A \subseteq B \subseteq cl(A)$  in X.

**Remark 3.10:** Every IFGOS and every IFβGOS are independent to each other.

**Example 3.11:** Let  $X = \{a, b\}$  and  $G_1 = \langle x, (0.5_a, 0.5_b), (0.5_a, 0.5_b) \rangle$  and  $G_2 = \langle x, (0.3_a, 0.1_b), (0.7_a, 0.8_b) \rangle$ . Then  $\tau = \{0\sim, G_1, G_2, 1\sim\}$  is an IFT on X. Let  $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  be an IFS in X. Then  $A^c \subseteq G_1$  and  $cl(A^c) = G_1^c \subseteq G_1$ .

http://www.ijesmr.com @ International Journal of Engineering Sciences & Management Research[50]



Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ either } \mu_a \ge 0.5 \text{ and } \mu_b \ge 0.5 \text{ or } \mu_a < 0.3 \text{ and } \mu_b < 0.1, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

Therefore A<sup>c</sup> is an IFGCS in X but it is not an IF $\beta$ GCS in X and hence A is an IFGOS in X. But it is not an IF $\beta$ GOS, since  $\beta$ int(A)  $\not\supseteq$  U whenever A  $\supseteq$  U and U is an IF $\beta$ CS in (X,  $\tau$ ).

**Example 3.12:** Let X = {a, b} and G =  $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let A =  $\langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  be an IFS in X.

Then, IF  $\beta C(X) = \{0 \sim, 1 \sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

We have  $A^c \subseteq G$ . As  $\beta cl(A^c) = A^c$ ,  $\beta cl(A^c) \subseteq G$ , where G is an IF $\beta OS$  in X. This implies that  $A^c$  is an IF $\beta GCS$  in X and hence A is an IF $\beta GOS$  in X. But it is not an IFGOS in X, since  $G^c \not\subseteq int(A)$  whenever  $G^c \subseteq A$ , where  $G^c$  is an IF $\beta CS$  in X.

**Remark 3.13:** The intersection of any two IF $\beta$ GOS is not an IF $\beta$ GOS in general as seen from the following example.

**Example 3.14:** Let  $X = \{a, b\}$  and  $\tau = \{0 \sim, G_1, G_2, 1 \sim\}$  where  $G_1 = \langle x, (0.7_a, 0.8_b), (0.3_a, 0.2_b) \rangle$  and  $G_2 = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$ . Then the IFSs  $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$  and  $B = \langle x, (0.4_a, 0.2_b), (0.4_a, 0.8_b) \rangle$  are IF $\beta$ GOSs in  $(X, \tau)$  but  $A \cap B$  is not an IF $\beta$ GOS in  $(X, \tau)$ . Let us prove  $A^c$  and  $B^c$  are IF $\beta$ GCS.

Then IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ provided } \mu_b < 0.7 \text{ whenever } \mu_a \ge 0.6, \mu_a < 0.6 \text{ whenever } \mu_b \ge 0.7, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

As  $\beta cl(A^c) = A^c$ ,  $A^c$  is an IF $\beta$ GCS in X and hence A is an IF $\beta$ GOS in X, and  $\beta cl(B^c) = B^c$ , we have  $B^c$  is an IF $\beta$ GCS in X and hence B is an IF $\beta$ GOS in X.

Now to prove  $A \cap B = \langle x, (0.4_a, 0.2_b), (0.6_a, 0.8_b) \rangle$  is an IF $\beta$ GOS. Let us prove  $(A \cap B)^c$  is an IF $\beta$ GCS. Now since  $(A \cap B)^c = \langle x, (0.6_a, 0.8_b), (0.4_a, 0.2_b) \rangle \subseteq G_1$  but  $\beta cl (A \cap B)^c = 1 \sim \notin G_1$ .

Therefore  $(A \cap B)^c$  is not an IF $\beta$ GCS in X and hence  $A \cap B$  is not an IF $\beta$ GOS in X.

**Theorem 3.15:** Let  $(X, \tau)$  be an IFTS. Then for every  $A \in IF\beta GO(X)$  and for every  $B \in IFS(X)$ ,  $\beta int(A) \subseteq B \subseteq A \Rightarrow B \in IF\beta GO(X)$ .

**Proof:** Let A be any IF $\beta$ GOS of X and B be any IFS of X. Let  $\beta$ int(A)  $\subseteq$  B  $\subseteq$  A. Then A<sup>c</sup> is an IF $\beta$ GCS and A<sup>c</sup>  $\subseteq$  B<sup>c</sup>  $\subseteq \beta$ cl(A<sup>c</sup>). Therefore B<sup>c</sup> is an IF $\beta$ GCS [7] which implies B is an IF $\beta$ GOS in X. Hence B  $\in$  IF $\beta$ GO(X).

**Theorem 3.16:** An IFS A of an IFTS (X,  $\tau$ ) is an IF $\beta$ GOS if and only if F  $\subseteq \beta$ int(A) whenever F is an IF $\beta$ CS and F  $\subseteq$  A.

**Proof:** Necessity: Suppose A is an IF $\beta$ GOS. Let F be an IF $\beta$ CS such that  $F \subseteq A$ . Then  $F^c$  is an IF $\beta$ OS and  $A^c \subseteq F^c$ . By hypothesis  $A^c$  is an IF $\beta$ GCS, we have  $\beta cl(A^c) \subseteq F^c$ . Therefore  $F \subseteq \beta$ int(A).

**Sufficiency:** Let F be an IF $\beta$ CS such that F  $\subseteq$  A and F  $\subseteq \beta$ int(A). Then  $(\beta$ int(A))<sup>c</sup>  $\subseteq$  F<sup>c</sup> and A<sup>c</sup>  $\subseteq$  F<sup>c</sup>. This implies that  $\beta$ cl(A<sup>c</sup>)  $\subseteq$  F<sup>c</sup>, where F<sup>c</sup> is an IF $\beta$ OS. Therefore A<sup>c</sup> is an IF $\beta$ GCS. Hence A is an IF $\beta$ GOS.



**Theorem 3.17:** Let  $(X, \tau)$  be an IFTS. Then for every  $A \in IFS(X)$  and for every  $B \in IF\betaO(X)$ ,  $B \subseteq A \subseteq int(cl(int(B))) \Rightarrow A \in IF\betaGO(X)$ .

**Proof:** Let B be an IF $\beta$ OS. Then B  $\subseteq$  cl(int(cl(B))). By hypothesis, A  $\subseteq$  int(cl(int(cl(int(cl(B))))))  $\subseteq$  int(cl(int(cl(int(cl(B))))))  $\subseteq$  int(cl(cl(int(cl(B)))))  $\subseteq$  int(cl(cl(A)))  $\subseteq$  int(cl(A)) as B  $\subseteq$  A. Therefore A is an IF $\beta$ OS and by Theorem 3.2, A is an IF $\beta$ GOS. Hence A  $\in$  IF $\beta$ GO(X).

**Theorem 3.18:** If A is an IFRCS and B is an IF $\beta$ OS, then A U B is an IF $\beta$ GOS.

**Proof:** Let B be an IF $\beta$ OS and A be an IFRCS. Then B  $\subseteq$  cl(int(cl(B))) and cl(int(A)) = A. Therefore A  $\cup$  B  $\subseteq$  A  $\cup$  (cl(int(cl(B))) = cl(int(A))  $\cup$  cl(int(cl(B)))  $\subseteq$  cl(int(cl(A)))  $\cup$  cl(int(cl(B))) = cl(int(cl(A))  $\cup$  int(cl(B)))  $\subseteq$  cl(int(cl(A)  $\cup$  cl(B)))  $\subseteq$  cl(int(cl(A  $\cup$  B))). Therefore A  $\cup$  B is an IF $\beta$ OS and by Theorem 3.2, A  $\cup$  B is an IF $\beta$ GOS.

**Theorem 3.19:** Let  $(X, \tau)$  be an IFTS then for every  $A \in IFSPO(X)$  and for every IFS B in X,  $A \subseteq B \subseteq cl(A) \Rightarrow B \in IF\beta GO(X)$ .

**Proof:** Let A be an IFSPOS in X. Then there exists an IFPOS, (say) C such that  $C \subseteq A \subseteq cl(C)$ . By hypothesis,  $A \subseteq B$ . Therefore  $C \subseteq B$ . Since  $A \subseteq cl(C)$ ,  $cl(A) \subseteq cl(C)$  and  $B \subseteq cl(C)$ , by hypothesis. Hence by [10], B is an IFSPOS. As every IFSPOS is an IF $\beta$ GOS by Theorem 3.2,  $B \in IF\beta$ GO(X).

**Theorem 3.20:** Let  $(X, \tau)$  be an IFTS and A, B  $\subset$  X, If B is IF $\beta$ GO(X) and  $\beta$ int(B)  $\subset$  A then A  $\cap$  B is IF $\beta$ GO(X).

**Proof:** Since B is IF $\beta$ GO(X) and  $\beta$ int(B)  $\subset$  A,  $\beta$ int(B)  $\subset$  A  $\cap$  B  $\subset$  B, by Theorem 3.15, A  $\cap$  B is IF $\beta$ GO(X).

#### CONCLUSION

Thus we have analysed the relationship between intuitionistic fuzzy  $\beta$  generalized open sets and the already existing intuitionistic fuzzy open sets and obtained many interesting theorem concern with the intuitionistic fuzzy  $\beta$  generalized open sets.

#### REFERENCES

- [1] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy sets and systems, 1986, 87-96.
- [2] Chang, C., Fuzzy topological spaces, J. Math. Anal. Appl., 1968, 182-190.
- [3] Coker, D., An introduction to intuitionistic fuzzy topological space, Fuzzy sets and systems, 1997, 81-89.
- [4] Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, The J. fuzzy mathematics, 1997, 365-378.
- [5] Jayanthi, D., Generalized  $\beta$  closed sets in intuitionistic fuzzy topological spaces, International Journal of Advance Foundation and Research in Science & Engineering (IJAFRSE) December 2014.
- [6] Jayanthi, D., Relation between semipre closed sets and beta closed sets in intuitionistic fuzzy topological spaces, Notes on Intuitionistic Fuzzy Sets, 2013, 53-56.
- [7] Saranya, M., and Jayanthi, D., *On Intuitionistic fuzzy β generalized closed sets*, International Journal of Computational Engineering Research (IJCER), Volume 6, Issue 3, March 2016.
- [8] Thakur, S. S., and Rekha Chaturvedi, *Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice,* Seria: *Mathematica,* 2006, 257-272.
- [9] Thakur, S. S., and Singh, S., On fuzzy semi-pre Open sets and fuzzy semi-pre continuity, Fuzzy sets and systems, 1998, 383-391.



- [10] Young Bae Jun & seok Zun Song, Intuitionistic fuzzy semi-pre Open sets and Intuitionistic semi-pre continuous mappings, jour. of Appl. Math & computing, 2005, 465-474.
- [11] Zadeh, L. A., *Fuzzy sets*, Information and control, 1965, 338-353.